Mise en évidence d'écarts, liés à des aspects énergétiques, entre le système réel et sa modélisation multiphysique [PARTIE 2]

GravityLight

III. Mise en place du modèle dans sa version 2

Situation à modéliser dans le modèle version 2 :

La situation initialement modélisée est celle d'une masse de 12.5kg, suspendue à une hauteur de 1.04m, avec une charge de sortie résistive de 390Ω

<u>Attente vis-à-vis du modèle version 2 :</u>

- La masse suspendue ne doit pas indéfiniment descendre (elle doit stopper son déplacement une fois avoir touché le sol)
- En cas de modification de la valeur de la masse suspendue (augmentation ou diminution), le modèle doit avoir un fonctionnement qualitatif en accord avec le système réel

Q1. Créer une copie de votre modèle 1 sous le nom « **ModeleVersion2.slx** ». **Modifier** ce modèle Matlab / Simulink en ajoutant et en paramétrant convenablement les blocs manquants apparaissant ci-dessous :

Blocs	Librairies	Paramétrage des blocs	
1 Constant	Simulink / Commonly Used Blocks	Rôle de ce bloc : Imposer une valeur constante	
		Paramètres à modifier : « Constant value »	
		Constant value:	
		0	

A T B Switch	Simulink / Commonly Used Blocks	Rôle de ce bloc : Aiguiller les signaux A ou B vers la sortie S en fonction de T (si T>0 alors S est relié à B, si T=0 alors S est relié à A) Paramètres à modifier : « Criteria » & « Threshold » Criteria for passing first input: u2 > Threshold Threshold: 0
A → B B	Simulink / Logic and Bit Operations	Rôle de ce bloc : <i>Test logique retournant 1 en sortie si l'entrée A à une valeur ici supérieure ou égale à l'entrée B. Sinon retourne 0.</i> Paramètres à modifier : « Relational operator » Relational operator: >=

Q2. Saisir un temps de simulation de 1000s et **exécuter** le modèle en cliquant sur l'icône **Copier-coller** dans votre compte-rendu l'évolution temporelle des grandeurs suivantes en double-cliquant sur le Scope associé :

- Vitesse de la masse suspendue en m/s
- Position de la masse suspendue en m
- Tension en sortie du GravityLight en V
- Courant débité par le GravityLight en A

Q3. Indiquer si, pour ce modèle version 2, la masse suspendue se stoppe une fois le sol touché. Relever la durée de fonctionnement du système.

Q4. Ajouter les blocs utiles au modèle version 2 afin de permettre l'affichage de l'évolution temporelle des grandeurs suivantes :

- la puissance mécanique en entrée du GravityLight
- la puissance électrique en sortie du GravityLight
- le rendement du GravityLight
- l'énergie mécanique cumulée en entrée du GravityLight
- l'énergie électrique cumulée en sortie du GravityLight

Q5. Ré-exécuter à plusieurs reprises le modèle version 2, en cliquant sur l'icône \bigcirc , en modifiant la valeur de la masse m afin d'établir le tableau ci-dessous :

m en kg	P _{elec} en W	Durée de fonctionnement en s	Energie électrique totale en J
5.2			
7.4			
10.6			
12.5			

Voici des résultats de mesures réalisées sur le GravityLight :

m en kg	P _{elec} en W	Durée de fonctionnement en s	Energie électrique totale en J
5.2	0.0114	1014	11.56
7.4	0,0408	525	21.42
10.6	•••		
12.5	0.198	240	47.52

Q6. A partir des résultats de mesures réalisées sur le système GravityLight, **indiquer** si le modèle version 2 se comporte de façon satisfaisante concernant la durée de fonctionnement notamment en cas d'augmentation de la valeur de la masse m.

Q7. Calculer l'écart relatif, entre le modèle 2 et le système réel, sur la quantité d'énergie totale produite par le GravityLight pour une masse de 12.5kg et une hauteur de 1.04m. **Conclure**.